\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) II-Semester Main Examinations, January-2021
 Engineering Mechanics

(Common to Civil, EEE \& Mech.)
Time: 2 hours
Max. Marks: 60
Note: Answer any NINE questions in Part-A and any THREE from Part-B
Part-A (9 $\times 2=18$ Marks)

Q. No.	Stem of the question	M	L	CO	PO
1.	Show that Product of Inertia about its axis of symmetry is Zero	2	2	1	1
2.	Find the radius of gyration of a circular section of radius ' 80 mm '	2	2	1	1
3.	What is general plane motion?	2	1	2	2
4.	Differentiate between rectilinear and curvilinear motion	2	1	2	1
5.	State D'Alembert's principle	2	1	3	2
6.	Define instantaneous center of rotation	2	2	3	1
7.	State the principle of work energy in rotation with formula	2	2	4	2
8.	Determine the work done in pulling a block of wood weighing 10 kN for a length of 5 m on a smooth inclined plane which makes 30° with the horizontal.	2	2	4	2
9.	Define co-efficient of restitution	2	1	5	2
10.	What do you mean by impact of elastic bodies?	2	2	5	1
11.	Determine the mass moment of a right circular cylinder of height ' H ' and radius ' R ' about axis of symmetry.	2	2	1	2
12.	Differentiate between Kinematics and Kinetics $\text { Part-B }(3 \times 14=42 \text { Marks })$	2	1	2	2
13. a)	Find the Moment of Inertia of a solid sphere of mass ' M ' and radius ' R ' about its centroidal axis.	6	2	1	1
b)	Find the Product of inertia of a shaded area about ' XY ' axis for the figure as shown below	8	4	1	2

14. a) A stone is dropped into a well. The sound of the splash is heard 3.30 seconds later. How
far below the ground is the surface of water in the well? . Assume the velocity of sound as $333 \mathrm{~m} / \mathrm{s}$

A ball is thrown so that is just clears a 6 m wall 21 m away. If it left the
b)
hand 1.50 m above the ground and at an angle of 60° to horizontal, what was the initial velocity of the ball?
15. a) A ladder $\mathrm{AB}, 5 \mathrm{~m}$ long, rests at a point $\mathrm{A}(0,4)$ on a smooth wall and at appoints $B(3,0)$ on a smooth floor. Determine the coordinates of the instantaneous center of rotation, if B moves to the right.
b) The 30 N block B is rest on a smooth horizontal surface. Determine the acceleration of 20 N block A is released from rest.

16. a) A stiffness of $30 \mathrm{~N} / \mathrm{mm}$ is pulled from an extension of 2 mm to an extension of 5 mm . Calculate the work done.
b) Block A and B have masses of 20 kg and 10 kg respectively. Find the velocity of block B after it has moved 1 m from rest. Take coefficient of kinetic friction as 0.2 between block A and horizontal surface.

$\begin{array}{llll}6 & 3 & 2\end{array}$
$\begin{array}{llll}8 & 2 & 3 & 2\end{array}$
$\begin{array}{llll}2 & 2 & 3 & 2\end{array}$
$\begin{array}{llll}12 & 3 & 3 & 2\end{array}$
$\begin{array}{llll}2 & 2 & 4 & 2\end{array}$
$\begin{array}{llll}12 & 2 & 4 & 2\end{array}$
17. a) State and prove impulse momentum equation.
b) Blocks A and B have masses of 10 kg and 15 kg respectively. Determine the time taken by block B to move 5 seconds from rest.

18. a) A solid right circular cylinder made of lead which is mounted with a solid hemisphere made of steel on its top. If lead weigh $11400 \mathrm{~kg} / \mathrm{m} 3$ and steel weighs $7860 \mathrm{~kg} / \mathrm{m} 3$. Find the mass moment of inertia of the assembly about its vertical centroidal axis.
b) A balloon rises from the ground with a constant acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$, five seconds later a stone is thrown vertically up from the launching pad. Calculate the minimum velocity of stone for it to just touch the balloon.
19. Answer any two of the following:
a) A lift operates under a maximum of 8 person's mass of the lift is 800 kg . Determine the limits of tension if the lift accelerates at a constant rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ either upwards or downwards. Take average weight of a person as 700 N .
b)

A body of weight 600 N moves on a level horizontal surface for a distance of 30 m with a force of 100 N applied to body at an angle of 30° to horizontal. Find the work done taking coefficient of kinetic friction as 0.2
c) A bullet of mass 30 grams and moving with a velocity of $630 \mathrm{~m} / \mathrm{s}$ penetrates a wooden block of mass 3 kg and emerges with a velocity of 180 m / s. How long does the block moves?

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	54.3
2	Knowledge on application and analysis (Level-3 \& 4)	40.3
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	5.4

